INTEGRATIVE EVOLUTIONARY BIOLOGY LAB
  • Home
  • News
  • Research
  • Media Coverage
  • Publications
  • Contact
Picture
Picture
Picture
Picture
Picture
Picture
Picture

2020

[27] Kautt A*, Kratochwil CF
*, Nater A*, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020): "Contrasting signatures of genomic divergence during sympatric speciation" Nature Link

[26] Urban S, Nater A,  Meyer A, Kratochwil CF (2020): "Different sources of allelic variation drove repeated color pattern divergence in cichlid fishes" Molecular Evolution and Evolution Link

[25] Liang Y, Meyer A and Kratochwil CF (2020): “Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish". Scientific Reports 10, 12329. Link

[24] Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM (2020): “Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets". Cell Reports 31 (11), 107767. Link

[23] Liang Y, Gerwin J, Meyer A and Kratochwil CF (2020): “Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish Haplochromis latifasciatus". Front. Cell. Dev. Biol. 8:62. Link

[22] Kratochwil CF and Rijli FM (2020): “The Cre/lox system to assess the development of the mouse brain”, Brain development: Methods and Protocols, Methods in Molecular Biology (Simon G. Sprecher ed.), Springer, New York. 2047, 491–512. Link

2019

[21] Kratochwil CF*, Liang Y*, Urban S, Torres-Dowdall J, and Meyer A (2019): Evolutionary dynamics of structural variation at a key locus for color pattern diversification in cichlid fishes. Genome Biology and Evolution 11(12):3452–3465. Link

[20] Montiglio PO*, Gotanda KM*, Kratochwil CF*, Laskowski KL*, Farine DR* (2019). Hierarchically embedded interaction networks represent a missing link in the study of behavioral and community ecology. Behavioral Ecology, arz168 Link

[19] Kratochwil CF*, Urban S*, and Meyer A (2019). Genome of the Malawi golden cichlid fish (Melanochromis auratus) reveals exon loss of oca2 in an amelanistic morph.​ Pigment Cell & Melanoma Research 32:719-723. Link (Cover)

​[18] Kratochwil CF (2019). Molecular mechanisms of convergent color pattern evolution. Zoology 134:66-68. Link (Cover)

[17] Kratochwil CF, and Meyer A (2019). Fragile DNA contributes to repeated evolution. Genome Biology 20(1):39. Link

2018

[16] Kratochwil CF , Liang Y, Gerwin J, Woltering JM, Urban S, Henning F, Machado-Schiaffino G, Hulsey CD, and Meyer A. (2018). Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362:457–460. Link 
 
See also perspective by Hugo Gante: Gante, H. F. (2018). How fish get their stripes—again and again. Science 362:396–397. Link    

[15] Saemi-Komsari M*, Mousavi-Sabet H*, Kratochwil CF*, Sattari M, Eagderi S, and Meyer A (2018): Early developmental and allometric patterns in the electric yellow cichlid Labidochromis caeruleus. Journal of Fish Biology 92:1888–1. Link

2017

[14] Kratochwil CF*, Sefton MS*, Liang Y, and Meyer A (2017). Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus) — towards understanding gene function and regulatory evolution in an ecological model system for rapid phenotypic diversification. BMC Developmental Biology 17:15. Link

[13] Kratochwil CF, Maheshwari U, and Rijli FM (2017). The Long Journey of Pontine Nuclei Neurons: From Rhombic lip to Cortico-Ponto-Cerebellar Circuitry. Front. Neural Circuits 11:3. Link

[12] Renier N, Dominici C, Erzurumlu R,, Kratochwil CF, Rijli FM, Gaspar P, and Chedotal A (2017). A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife 6, e23494. Link

2015
​

[11] Kratochwil CF*, Geissler L*, Irisarri I*, and Meyer A (2015). Molecular evolution of the neural crest regulatory network in ray-finned fish. Genome Biology and Evolution 7 (11), 3033-3046. Link (Cover)

[10] Bechara A, Laumonnerie C, Vilain N, Kratochwil CF, Cankovic V, Maiorano NA, Kirschmann MA, Ducret S, and Rijli F (2015). Hoxa2 selects barelette neuron identity and connectivity in the mouse somatosensory brainstem. Cell Reports. 13 (4), 783 -797. Link

[9] Kratochwil CF and Meyer A (2015). Evolution: Tinkering within gene regulatory landscapes. Current Biology 25 (7) R185-R288. Link

[8] Kratochwil CF and Meyer A (2015). Mapping active promoters by ChIP-seq profiling of H3K4me3 in cichlid fish – a first step to uncover cis-regulatory elements in ecological model teleosts. Molecular Ecology Resources. 15 (4), 761-771. Link

[7] Kratochwil CF*, Sefton MS*, and Meyer A (2015). Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences. BMC Developmental Biology 15: 12. Link

​
[6] Kratochwil CF and Meyer A (2015). Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays 37 (2), 213-226.  Link (Cover)

2014

[5] Kratochwil CF and Rijli FM (2014): “The Cre/lox system to assess the development of the mouse brain”, Brain development: Methods and Protocols, Methods in Molecular Biology (Simon G. Sprecher ed.), Springer, New York. 1082. 295–313. Link

2013

[4] Di Meglio T*, Kratochwil CF*, Vilain N, Loche A, Vitobello A, Yonehara K, Roska B, Peters AHFM, Wellik D, Ducret S, and Rijli FM (2013). Ezh2 orchestrates topographic tangential migration and connectivity of precerebellar neurons. Science 339 (6116), 204–207. Link

[3] Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, and Rijli FM (2013). Mouse Hoxa2 genetic analysis provides a model for microtia and auricle duplication. Development 140 (21), 4386–4397. Link

2010

[2] Kastenhuber E*, Kratochwil CF*, Ryu S*, Schweitzer J, and Driever W (2010). Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 518 (4), 439-458. Link

2009

[1] Tervonen TA*, Louhivuori V*, Sun X, Hokannen M-E, Kratochwil CF, Zebryk P, Castren E, and Castren ML (2009). Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome.  Neurobiol. Dis.  33 (2), 250-259 Link

​* equal contribution
(COPYRIGHT CLAUDIUS KRATOCHWIL 2020)
  • Home
  • News
  • Research
  • Media Coverage
  • Publications
  • Contact